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DETECTING VERSION NUMBER ATTACKS IN 

RPL-BASED NETWORKS USING A 

DISTRIBUTED MONITORING ARCHITECTURE 
 

 

ABSTRACT 

The concept of Internet of Things involves the 

deployment of Low power and lossy Networks (LLN) allowing 

communications among pervasive devices such as embedded 

sensors. The IETF designed the Routing Protocol for Low power 

and lossy Networks (RPL) for supporting these constrained 

networks. Keeping in mind the different requirements of such 

networks, the protocol supports multiple routing topologies, 

called DODAGs, built using different objective functions, so as 

to optimize routing based on several metrics. A DODAG 

versioning system is incorporated into RPL in order to ensure an 

optimized topology. However, an attacker can exploit this 

mechanism to damage the network and reduce its lifetime. The 

unique aspects of our work can be seen in our analysis of a 

realistic network topology that has both static and mobile nodes 

with different cardinalities for which our inspiration came from 

the IETF routing requirement documents. The version number 

attack can misuse a RPL feature which is normally used for 

ensuring a loop and error free topology. A malicious node 

modifies the version number associated to a topology, thereby 

forcing a rebuild of the entire routing tree. Since the version 

number is included in control messages by parents, there is no 

mechanism provided by the standardized protocol to guarantee 

the integrity of the advertised version number. The proposed 

detection strategy based on a distributed monitoring architecture 

with dedicated algorithms that is able to identify malicious nodes 

performing such attacks in RPL-based environments. The 

performance of this solution is evaluated through extensive 

experiments and its scalability is quantified considering a 

monitoring node placement method. 

I.INTRODUCTION 
The growing interest for the Internet of Things has resulted in 

the large-scale deployment of Low power and Lossy Networks. 

They enable new applications ranging from smart electricity 

grids [1] to home automation solutions [2] [3]. The constrained 

devices composing these networks can be integrated with the 

existing Internet infrastructure, so that they exploit software 

services already available coupled in conjunction with their 

control and data gathering capabilities. The Routing Protocol for 

Low-power Lossy Networks (RPL) was designed by the IETF 

RoLL working group to cope with resource constraints of 

embedded devices [4]. This  

 

 

protocol not only organizes nodes into DODAGs (Destination 

Oriented Directed Acyclic Graphs) but also optimizes the 

topology for application specific objectives, e.g. energy 

conservation, by using metrics and/or constraints available to a 

device.   

 An RPL instance is a set of DODAGs, each with a specific 

objective function. Several RPL instances can be run within a 

network. A node can only join a single DODAG in one instance, 

however it can be part of several DODAGs only if they are in 

different instances. A node’s rank value represents its position 

with respect to the DODAG root. This value always increases in 

the downward direction. To avoid rebuilding the entire DODAG 

when a parent node disappears, two local repair mechanisms are 

introduced by the protocol. The first one allows nodes to 

temporarily route through neighbors of the same rank, while the 

other one consists in using an alternative parent. It also provides 

a global repair feature to rebuild completely the DODAG. The 

mechanisms that enable RPL to provide this level of flexibility 

could also be manipulated by malicious  

nodes to harm the network. In particular, the version number 

attack can misuse a RPL feature which is normally used for 

ensuring a loop and error free topology. A malicious node 

modifies the version number associated to a topology, thereby 

forcing a rebuild of the entire routing tree. Since the version 

number is included in control messages by parents, there is no 

mechanism provided by the standardized protocol to guarantee 

the integrity of the advertised version number. A forced rebuild 

can cause increased overhead, depletion of energy reserves, 

channel availability issues and even loops in the routing 

topology. Previous studies show that such attacks have a 

significant impact on RPL networks and highlight the 

importance of addressing them [5], [6]. That architecture 

propose a solution based on a distributed monitoring architecture 

to detect version number attacks in RPL-based environments and 

identify the malicious nodes involved. Our main contributions 

are (1) the design of a detection strategy for these attacks and its 

associated algorithms, (2) the deployment and instantiation of 

the strategy using a distributed passive monitoring architecture, 

(3) the performance evaluation of our solution through extensive 

experiments and (4) the quantification of the proposed solution 

scalability in line with a node placement method. 

 
 

FIG.1.DODAG TREE 

 

II.RELATED WORK 

Version number attacks have already been analyzed in our 

previous studies such as [5] and [6]. We have shown that this 

type of attacks have severe consequences for RPL network 

causing significant control message overhead and building loops 

in the network which leads to a reduced lifetime for the  
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network and the loss of data packets. Since many loops are built, 

the end-to-end delivery ratio decreases also. Authors of [6] have 

proposed to investigate these attacks under mobility with a 

probabilistic attacker model. They have also analyzed the impact 

of these attacks on nodes energy consumption and show that the 

batteries of the nodes were severely reducedby the attack. These 

analyses have confirmed the need for detecting and remedying 

these attacks. 

 In that context, the Version Number and Rank Authentication 

(VeRA) approach aims at preventing compromised nodes from 

impersonating the root and from sending an illegitimateincreased 

version number [7]. It provides integrity of version numbers and 

ranks advertised in control messages via hash and signature 

operations. Their approach is shown to be faultyby the authors of 

[8] and [9], and another mechanism called TRAIL that uses the 

root as a trust anchor and monotonically increases node ranks is 

also proposed by them. Both approaches require maintaining 

state information on nodes that is likely to reduce already 

constrained computing resources. Several intrusion detection 

systems have also been proposed for RPL-based networks [10], 

[11]. The first solution [10] is a specification-based IDS relying 

on a finite state machine implemented in each monitor node. The 

second IDS called SVELTE [11] is composed of three modules. 

One is responsible for rebuilding the topology at the sink nodes 

using requests, the second one carries out the intrusion detection 

process and the last one is a mini distributed firewall. However, 

none of them proposes to detect version number attacks. In order 

to prevent depleting the scarce resources of devices and provide 

a security-oriented monitoring solution, we propose a passive 

distributed monitoring architecture [12] which relies on higher 

order devices typically used in AMI1 networks. We also prove 

that this solution is efficient to detect DAG inconsistency 

attacks. However, none of these solutions address version 

number attack properties. 

III.VERSION NUMBER ATTACKS IN RPL NETWORKS 

 The RPL protocol is vulnerable to version number attacks, 

which exploit the global repair mechanism to overload the 

network. The root initiates a global repair, when too many 

inconsistencies are detected in the network. It consists in 

rebuilding the entire DODAG by incrementing the version 

number of the DODAG [4]. This number is carried in a type of 

control messages called DIO2. Each receiving node compares its 

existing version number against the one received from its parent. 

When the received version is higher, it must ignore its current 

rank information, reset trickle timers and initiate a new 

procedure to join the DODAG. This global repair mechanism 

guarantees a loop free topology, but is also quite costly. An older 

value of the version advertised in DIO messages indicates that 

the node did not migrate to the new version of the DODAG. 

Such a node should not be chosen as preferred parent by other 

nodes. Two versions of a DODAG can exist at the same time 

during a global repair. However, in order to avoid loops, data 

packets from the old version are allowed to transit in the new 

version but not the other way. As the convergence of the 

network has not been reached, the old version is no longer a 

DAG and loop free topologies cannot be guaranteed in this 

situation. 

 To avoid possible inconsistencies in the network, the version 

number should be propagated unchanged through the DODAG. 

However, there is no mechanism in RPL to ensure the integrity 

of the version number in received DIO messages. A malicious 

node may change this value in its own DIO messages to harm 

the network. Upon receiving a malicious DIO with a new 

version number, nodes reset their trickle timer, update the 

version and advertise this new version through DIO messages to 

their neighborhood as well.  

 This can cause the illegitimate version number to propagate 

through the network. Such manipulation of the version number 

in the DIO packets causes both an unnecessary rebuild of the 

whole DODAG, and generates loops in the topology. 

Furthermore, since the new version of the DODAG is not built 

from the root, the topology is no longer acyclic, allowing loops 

to occur. This can negatively impact energy resources of the 

nodes, routing of data packets and channel availability. The 

pattern of this attack makes it difficult for a node to detect it 

locally. Indeed a malicious D 

 IO packet coming from a parent seems to be legitimate for a 

node. When it comes from a child, then the node can consider 

this as due to an inconsistency in the network. Also localization 

of the malicious DIOs source is impossible in a purely local 

point of view, as nodes have only a view of their neighbors. 

They need to communicate with each other in order to find the 

origin of the attack. 

 

 

IV. DETECTION STRATEGY 

In the following section, we present our detection strategy for 

identifying version number attacks in RPL networks. This 

strategy uses our distributed monitoring architecture [12] on 

which we have deployed detection algorithms specifically 

designed for the version number attack. We first detail the 

architecture components and then describe the different algo-

rithms that support this detection. 

A. Security-oriented Monitoring Architecture 

The strategy relies on a distributed monitoring 

architecture for the Internet of Things that passively observes the 

network based on dedicated nodes. This architecture uses RPL 

protocol mechanisms to perform monitoring and detection 

operations. Two types of nodes participating in the network 

compose. 

 

 

 

 

 

 

 

 

 

Fig.2.Detection strategy based on our monitoring 

architecture. 

this architecture, monitored nodes, also called regular nodes, 

plotted in white in Figure 1, and monitoring nodes plotted in 

blue which implements the detection solution. 

The monitored nodes, noted V = fvi g, are highly con-

strained devices that are typical C0 or C1 devices [13]. Their 

function is to carry out their sensing or actuation task and they 

constitute the so called regular network. The monitoring nodes 

(V 0 = fvk
0 g) are on the other side, higher order devices that are 

at least C2 [13] or better. Since they have higher capabilities, 

they can perform monitoring and detection activities without 

impacting their ability to route information in the regular 

network. They are able to intercept and analyze packets sent by 

regular nodes and record necessary information. A monitoring 

node vk
0 can only monitor its neighborhood Nvk0 which is 
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composed of all nodes in its communication range. However, 

network-level monitoring information is necessary to follow the 

topology and detect inconsistencies in the network such as 

maliciously incremented version number. As such, these 

monitoring nodes periodically forward the collected monitor-ing 

data towards the sink which can perform a distributed detection. 

In order to preserve regular nodes resources, the 

monitoring nodes form a second routing topology, called 

monitoring network, as illustrated by the upper plane of Figure 

1. This network has access strictly limited to monitoring nodes 

and is used to send collected information and results of detection 

algorithms. We exploit the multi-instance feature of RPL to 

build the two networks: one instance for the regular network 

noted IR and one for the monitoring instance IM . Figure 1 

represents those two instances running at the same time. The two 

are completely independent which means that if 

Algorithm LOCAL  ASSESSMENTpotential att =NULL;for 

each DIO received by vk
0  from vi 2 Nvk0  do 

if (VNvi > VNvk0 ) and (potential att == NULL) then potential 

att = vi 

 send root(Mk = (VNvi ,vi,Nvk0 )) 

 end if 

end for 

LOCAL ASSESSMENT algorithm implemented on 

monitoring nodes except the root. 

The regular network breaks down at some point because of 

regular node failure or attacks, the monitoring network can still 

operate normally. 

B. Detection Algorithms 

This section details the different algorithms used in our strategy for 

detecting version number attacks considering that only one attacker 

is present in the network at a given time. Due to the fact that an 

incremented version number is propagated in the entire graph, a 

monitoring node cannot decide by itself if this is the result of an 

attack or not. The monitoring nodes must share monitoring 

information to identify the malicious node. Our monitoring 

architecture is designed to allow monitoring nodes to collaborate 

together thanks to the monitoring instance network. Also, the 

monitoring nodes can track information regarding their 

neighborhood, so the regular nodes do not have to carry out this 

task. To detect an attack and identify malicious nodes, we propose 

detection and location algorithms described in Figures 2, 3 and 4. 

The local assessment algorithm presented in figure 2 is deployed 

on monitoring nodes except the root and allows monitoring nodes 

to report to the root the sender of an incremented version number 

in their neighborhood. The algorithms presented by Figures 3 and 

4 are implemented on the root node. The first one detects the attack 

and gather all monitoring node information into tables. The last 

algorithm performs the attacker identification by analyzing the 

collected information. In the LOCAL ASSESSMENT algorithm, a 

monitoring node vk
0 , upon receiving a greater version number V 

Nvi from vi than its own version number V Nvk0 , sends to the root 

a message containing the address of the sender vi and the list of its 

neighbors Nvk0 obtained from the different received RPL control 

messages. The monitoring node only sends a message the first time 

it receives an incremented version number. Indeed, since the 

attacker is in the direct neighborhood of at least one monitoring 

node there is no need in sending further messages because senders 

of other incremented version number messages are relays. We also 

consider the other neighbors of the monitoring node as safe. 

Complementary to the algorithms, the root has the possibility to 

send a signal message indicating that the monitoring nodes should 

reset the potential att value, in order to restart the detection 

process, in case another attacker appears in the network. 

Algorithm DISTRIBUTED DETECTION anomaly detected = 0 

 

if (VNvj > VNv10 in DIO received from vj anomaly detected = 1 

add(potential att list, vj) 

 

add(neigh list, fNv10 g) 

 

start(detection timer) 

 

end if 

 

if (VNvi > VNv10 in Mk received) and (anomaly detected 

== 0) then 

 

anomaly detected = 1 

 

start(detection timer) 

 

end if 

 

while (potential att list.nb != card(V 0 )) or (!timer 

expired(detection timer)) do 

 

for each message Mk received from vk
0 add(potential att list, vi) 

add(neigh list, fNvk0 g) 

 

end for 

end while 

 

LOCALIZATION() 

DISTRIBUTED  DETECTION algorithm implemented on the 

root. 

This procedure exploits the two previous lists in order to 

produce two new lists: att list list composed of nodes considered 

as malicious and the safe list list containing all nodes classified 

as safe. The objective of this procedure is to compare 

neighborhoods of monitoring nodes in order to eliminate 

potential attackers. At initialization, the first element of the 

potential attacker list is added to the attacker list, and the other 

neighbors of the corresponding monitoring node are added to the 

safe list. 

Algorithm LOCALIZATION 

  att list = NULL 

     safe list = NULL 

 

 for (i=0, i<potential att list.nb, i++) do if (att  list == 

NULL) then 

 

 add(att list,potential att list[i]) 

 

 add(safe list,fneigh list[i] n potential att list[i]g else 

 

 if (potential att list[i] 2 att list) then 

 

 add(safe list,fneigh list[i]npotential att list[i]g 

 

 else if (potential att list[i] 2 safe list) then add(safe list,fneigh 

list[i]npotential att list[i]g 

 

 else 

add(att list,potential att list[i]) 
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 add(safe list,fneigh list[i] n potential att list[i]g) end if 

 

 if (neigh list[i] \ att list = vm; vm 6= ;) then remove(att 

list,vm) 

 

end if 

 end if 

  end for 

Localization algorithm implemented on the root 
The distributed detection algorithm (see figure 3 is supported by 

the root. Upon receiving either a monitoring message or an 

incremented version number, the root starts a detection timer to 

allow all monitoring nodes to send their messages. Two lists are 

managed by the root node: the potential att list list which is 

composed of all vi nodes reported by the different monitoring 

nodes and the neigh list list which is composed of each 

monitoring node neighbors from the attacker list. In order to 

illustrate these algorithms, we provide two examples describing 

the different possibilities using the topol-ogy presented in Figure 

5. The first scenario shows our detection strategy functioning 

under normal conditions. The second scenario is used to present 

a use case where the detection strategy produces false positive 

results (normal node considered as malicious). In the first 

scenario (see Figure 5a), the attacker is located at position 11, it 

sends DIO malicious messages to all its neighborhood (plain red 

arrows) which are relayed by other nodes (in purple dotted 

arrows). The different monitoring nodes report to the sink the 

sender of abnormal messages and the list of their neighbors. 

V.PERFORMANCEEVALUATION 

We have evaluated the performance of our detection strategy 

through experiments by implementing a Proof of Concept 

prototype. The section details our  

 

 

 

 

 

 

 

 

 

 

 

FIG.3.(a) Configurations with 4 monitoring nodes. (b) 5 

monitoring nodes. 
Attacker 

position 

Series 1 Series 2 Series 3 

V5 V5,V9 V5,V9 V5,V9 

V9 V5,V9 V5,V9 V9 

V18 V5,V18 V18 V18 

TABLE 1: Attacker detection results  

experimental setup, the selection process for the placement of 

monitoring nodes and the the performance results of our 

detection algorithms.  

A.SIMULATION SETUP 

In these experiments, we have set up a grid topology of 20 nodes 

corresponding to the lower plane of Figure 1. The grid topology 

was chosen because it allows relocation of the attacker to 

multiple positions easily, making it possible to study the 

performance of our detection strategy from different locations 

and neighborhood scenarios within a network. The Contiki 2.7 

operating system was used to implement the sink, regular nodes 

and monitoring nodes. We have considered the attacker 

implementation proposed in [5]. The Cooja tool [14] was used to 

run the simulation with the compiled binaries of the different 

nodes. The radio model used was the DGRM model (Directed 

Graph Radio Medium) to emulate the links as shown in the 

lower plane of Figure 1: regular nodes can communicate with 

their neighbor horizontally and vertically while the monitoring 

nodes can also listen diagonally. Across all experiments, node 

v1
0 is the DODAG root, acting as the sink to which all other 

nodes send messages every twenty seconds to generate a 

background traffic. The attacker is designed to constantly send 

incorrect version numbers, which are greater than the root’s 

version. Each simulation has lasted ten minutes which is enough 

to test our detection algorithms since only the first attack 

message is required for the detection as previously explained. 

The location of the attacker has been set to one of regular nodes, 

such that at least one simulation with the attacker located at 

every regular node is executed. This entire set of simulations is 

repeated three times for accuracy reasons. Attacks start after five 

minutes of simulation time, so that the network has enough time 

to settle and reaches a stable RPL topology. Not only the 

location of the attacker has been varied but also the location and 

the number of monitoring nodes. Indeed, we have seen in 

Section IV-B that it was possible to encounter false positives 

results depending on the fact that a node is monitored by one or 

several monitoring nodes. The next section details how and why 

different monitoring nodes configurations were chosen to 

evaluate the number of false positives. 

B.MONITORING NODE PLACEMENT SELECTION 

Since the designed detection solution depends on the 

cover-age of regular nodes by monitoring nodes, we defined the 

fol-lowing metrics: (i) Covi representing the percentage of 

regular nodes covered by exactly i monitoring nodes (i 2 [1; M]; 

M is the number of monitoring nodes); (ii) Cai representing the 

percentage of regular nodes covered by at least i monitoring 

nodes, e.g. Ca2 = Cov2 + Cov3 + Cov4 for M = 4. In all cases, we 

target Ca1 equals to 100% because all regular nodes should be 

covered by at least one monitoring node since the architecture is 

able to monitor all nodes. As shown by the second scenario in 

Section IV-B, Ca2 is an important parameter for selecting the 

configurations to be considered, because the number of false 

positive depends on the neighborhood overlapping of the 

monitoring nodes. Therefore, monitoring nodes configurations 

have been selected for different Ca2 values in order to quantify 

the impact of the Ca2 value on the number of false positives. 

Five different Ca2 values have been chosen including the lowest 

and the highest possible values for 4 and 5 monitoring nodes in 

the considered topology. The minimal number of required 

monitoring nodes is 4 so that Ca1 equals to 100%. This value is 

given by the resolution of an Integer Linear Program (ILP) with 

our grid topology under the constraint that the sink, v1
0 , is a 

monitoring node. The rest of the monitoring nodes are chosen 

among all the other nodes. A particular Ca2 value corresponds to 

several combination of Covi. Therefore, one configuration of 

each combination has been chosen for the simulations. For 4 

monitoring nodes, the number of possible configurations so Ca1 

= 100% is 24. We have also selected configurations with 5 

monitoring nodes because the obtained Ca2 values allow us to 

have zero false positive as illustrated by Figure 7b. For 5 

monitoring nodes, 427 configurations can be run. We have 

simulated 29 configurations corresponding to the selected Ca2 

values. The different chosen Ca2 values can be seen on Figure 7. 
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FIG.4. False positive rates for different location of the 

attacker when configuration is the topology of 1. 

 For each simulated scenario, the false positive rate (FPR) was 

calculated according to Equation 1, where F P and T N are 

respectively the number of false positives and the number of true 

negatives. A false positive is a node which has been incorrectly 

detected as malicious by our detection  

solution (the node is actually safe). A true negative is a 

node which has been properly considered as safe. 

                 FPR =
FP

FP+TN
 

 

C.DETECTION RESULTS 

Across all experiments, our detection strategy has suc-

cessfully located the attacker, but other regular nodes were 

sometimes detected as malicious too. Figure 6 details false 

positive results for the topology presented in the lower plane of 

Figure 1 where the monitoring nodes are v1
0 ; v7

0 ; v13
0 and v15

0 

and the Ca2 is 43,75% (maximum value for 4 nodes). We can 

observe that the FPR is 0 for 13 positions of the attacker Details 

about the detection results when the FPR is higher than 0 are 

given in Table III. When the attacker corresponds to node v5, 

node v9 is always detected as malicious too, because node v9 is 

each time the direct relay of the attacker v5 and is monitored by 

only one monitoring node (v13
0 ). No other monitoring nodes 

could have exonerate it. This is also the case for other positions 

of the attacker. However, attack relays were not considered as 

malicious each time. This can be explained by the fact that the 

attack relays can change depending on the timing for each 

simulation. For example, when the attacker is v18, v5 is 

considered as malicious only once, this is because monitoring 

node v1
0 receives only once the attack relay message from v5. 

The other times, the relay node v6 is also monitored by v7
0 which 

exonerates it. Similar results have been obtained for the other 35 

configurations. 

 
 FIG.5.Simulation process in contiki. 

 

VI.SCALABILITY EVALUATION 

We have also analyzed the scalability of our solution in 

line with the considered node placement. We have represented 

the problem of having at least C% of the nodes covered by at 

least two monitoring nodes using an optimization model. This 

constraint can be transformed into having at most (100 C)% of 

the nodes covered by exactly one monitoring node which can be 

formulated as follows: for a given topology, a given connectivity 

matrix for all possible monitoring nodes placement in this 

topology, a given number of monitoring nodes and a given value 

C, find a configuration of monitoring nodes placement that 

minimizes the number regular nodes monitored by only one 

monitoring nodes so that at most (100 C)% regular nodes are 

covered by strictly one monitoring node.In that context, we have 

considered four parameters detailed in Table IV, as inputs to 

solve this problem. The first parameter is the size of the 

topology N. The second one is the connec-tivity matrix detailing 

the links of possible monitoring nodes with other nodes, Ai;j = 1 

if node vi can listen to node vj. We set the diagonal of this matrix 

to 0, i.e. 8i; Ai;i = 0 which means that we consider that 

monitoring node does not cover itself. The third parameter is the 

number of monitoring nodes M. The last parameter is the 

percentage of regular nodes we want to be monitored by at least  

 two monitoring nodes C. The variables used are Y which 

represents if node vi is monitoring node (Yi = 1) or not (Yi = 0), 

W indicating if node vi is covered by monitoring node vj (Wi;j = 

1) or not (Wi;j = 0). The last variable is Z and represents if node 

vi is covered by exactly one monitoring node (Zi = 1) or not (Zi = 

0). The total number of variables for this problem is N(N + 2). is 

used to set v1
0 , the root, as a monitoring node, it is possible to 

set another particular node to be a monitoring node according to 

the topology specifics. Equation 3 indicates how many 

monitoring nodes we choose. The constraint Ca1 = 100% is 

given by Equation 4. Equation 5 calculates variable W which is 

used in Equation 6 to compute Z. The right part of this equation 

forces Zi = 0 if vi is a monitoring node or else Zi = 1.  

 

 

 

 

 

 

 

 

 

 

 

 

FIG.6.Number of monitoring nodes needed to have 

ca1=100%, ca2 = for different topologies. 

 

VII.CONCLUSION 
We have proposed in this paper a detection strategy 

with dedicated algorithms to address version number attacks in 

RPL networks. We have instantiated this solution based on our 

distributed monitoring architecture which preserves constrained 

nodes resources. We have exploited monitoring nodes 

collaboration to identify the attacker, the attacker localization 

process being performed by the root after gathering detection 

information from all monitoring nodes. We have evaluated our 

solution through experiments and have analyzed the 

performance according to defined metrics. We have shown the 

false positive rate of our solution can be reduced by a strategic 

monitoring nodes placement. We have also considered the 

scalability issue by proposing an optimization problem which 

can be easily adapted to different topologies. By resolving this 

problem, we have quantified the number of required monitoring 

nodes to ensure an acceptable false positive rate for a given size 

of topology. As future work, we are interested in performing 

complementary experiments in real infrastructures with 
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additional classes of devices implementing the RPL protocol. 

We also want to evaluate and extend our solution to the case of 

attacker coalition where are several malicious nodes are involved 

at the same time in the network. We are also planning to enhance 

our architecture with other detection modules for addressing 

additional attacks [17]. 
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