
© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809684 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 228

DETECTING VERSION NUMBER ATTACKS IN

RPL-BASED NETWORKS USING A

DISTRIBUTED MONITORING ARCHITECTURE

ABSTRACT

The concept of Internet of Things involves the

deployment of Low power and lossy Networks (LLN) allowing

communications among pervasive devices such as embedded

sensors. The IETF designed the Routing Protocol for Low power

and lossy Networks (RPL) for supporting these constrained

networks. Keeping in mind the different requirements of such

networks, the protocol supports multiple routing topologies,

called DODAGs, built using different objective functions, so as

to optimize routing based on several metrics. A DODAG

versioning system is incorporated into RPL in order to ensure an

optimized topology. However, an attacker can exploit this

mechanism to damage the network and reduce its lifetime. The

unique aspects of our work can be seen in our analysis of a

realistic network topology that has both static and mobile nodes

with different cardinalities for which our inspiration came from

the IETF routing requirement documents. The version number

attack can misuse a RPL feature which is normally used for

ensuring a loop and error free topology. A malicious node

modifies the version number associated to a topology, thereby

forcing a rebuild of the entire routing tree. Since the version

number is included in control messages by parents, there is no

mechanism provided by the standardized protocol to guarantee

the integrity of the advertised version number. The proposed

detection strategy based on a distributed monitoring architecture

with dedicated algorithms that is able to identify malicious nodes

performing such attacks in RPL-based environments. The

performance of this solution is evaluated through extensive

experiments and its scalability is quantified considering a

monitoring node placement method.

I.INTRODUCTION
The growing interest for the Internet of Things has resulted in

the large-scale deployment of Low power and Lossy Networks.

They enable new applications ranging from smart electricity

grids [1] to home automation solutions [2] [3]. The constrained

devices composing these networks can be integrated with the

existing Internet infrastructure, so that they exploit software

services already available coupled in conjunction with their

control and data gathering capabilities. The Routing Protocol for

Low-power Lossy Networks (RPL) was designed by the IETF

RoLL working group to cope with resource constraints of

embedded devices [4]. This

protocol not only organizes nodes into DODAGs (Destination

Oriented Directed Acyclic Graphs) but also optimizes the

topology for application specific objectives, e.g. energy

conservation, by using metrics and/or constraints available to a

device.

 An RPL instance is a set of DODAGs, each with a specific

objective function. Several RPL instances can be run within a

network. A node can only join a single DODAG in one instance,

however it can be part of several DODAGs only if they are in

different instances. A node’s rank value represents its position

with respect to the DODAG root. This value always increases in

the downward direction. To avoid rebuilding the entire DODAG

when a parent node disappears, two local repair mechanisms are

introduced by the protocol. The first one allows nodes to

temporarily route through neighbors of the same rank, while the

other one consists in using an alternative parent. It also provides

a global repair feature to rebuild completely the DODAG. The

mechanisms that enable RPL to provide this level of flexibility

could also be manipulated by malicious

nodes to harm the network. In particular, the version number

attack can misuse a RPL feature which is normally used for

ensuring a loop and error free topology. A malicious node

modifies the version number associated to a topology, thereby

forcing a rebuild of the entire routing tree. Since the version

number is included in control messages by parents, there is no

mechanism provided by the standardized protocol to guarantee

the integrity of the advertised version number. A forced rebuild

can cause increased overhead, depletion of energy reserves,

channel availability issues and even loops in the routing

topology. Previous studies show that such attacks have a

significant impact on RPL networks and highlight the

importance of addressing them [5], [6]. That architecture

propose a solution based on a distributed monitoring architecture

to detect version number attacks in RPL-based environments and

identify the malicious nodes involved. Our main contributions

are (1) the design of a detection strategy for these attacks and its

associated algorithms, (2) the deployment and instantiation of

the strategy using a distributed passive monitoring architecture,

(3) the performance evaluation of our solution through extensive

experiments and (4) the quantification of the proposed solution

scalability in line with a node placement method.

FIG.1.DODAG TREE

II.RELATED WORK

Version number attacks have already been analyzed in our

previous studies such as [5] and [6]. We have shown that this

type of attacks have severe consequences for RPL network

causing significant control message overhead and building loops

in the network which leads to a reduced lifetime for the

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809684 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 229

network and the loss of data packets. Since many loops are built,

the end-to-end delivery ratio decreases also. Authors of [6] have

proposed to investigate these attacks under mobility with a

probabilistic attacker model. They have also analyzed the impact

of these attacks on nodes energy consumption and show that the

batteries of the nodes were severely reducedby the attack. These

analyses have confirmed the need for detecting and remedying

these attacks.

 In that context, the Version Number and Rank Authentication

(VeRA) approach aims at preventing compromised nodes from

impersonating the root and from sending an illegitimateincreased

version number [7]. It provides integrity of version numbers and

ranks advertised in control messages via hash and signature

operations. Their approach is shown to be faultyby the authors of

[8] and [9], and another mechanism called TRAIL that uses the

root as a trust anchor and monotonically increases node ranks is

also proposed by them. Both approaches require maintaining

state information on nodes that is likely to reduce already

constrained computing resources. Several intrusion detection

systems have also been proposed for RPL-based networks [10],

[11]. The first solution [10] is a specification-based IDS relying

on a finite state machine implemented in each monitor node. The

second IDS called SVELTE [11] is composed of three modules.

One is responsible for rebuilding the topology at the sink nodes

using requests, the second one carries out the intrusion detection

process and the last one is a mini distributed firewall. However,

none of them proposes to detect version number attacks. In order

to prevent depleting the scarce resources of devices and provide

a security-oriented monitoring solution, we propose a passive

distributed monitoring architecture [12] which relies on higher

order devices typically used in AMI1 networks. We also prove

that this solution is efficient to detect DAG inconsistency

attacks. However, none of these solutions address version

number attack properties.

III.VERSION NUMBER ATTACKS IN RPL NETWORKS

 The RPL protocol is vulnerable to version number attacks,

which exploit the global repair mechanism to overload the

network. The root initiates a global repair, when too many

inconsistencies are detected in the network. It consists in

rebuilding the entire DODAG by incrementing the version

number of the DODAG [4]. This number is carried in a type of

control messages called DIO2. Each receiving node compares its

existing version number against the one received from its parent.

When the received version is higher, it must ignore its current

rank information, reset trickle timers and initiate a new

procedure to join the DODAG. This global repair mechanism

guarantees a loop free topology, but is also quite costly. An older

value of the version advertised in DIO messages indicates that

the node did not migrate to the new version of the DODAG.

Such a node should not be chosen as preferred parent by other

nodes. Two versions of a DODAG can exist at the same time

during a global repair. However, in order to avoid loops, data

packets from the old version are allowed to transit in the new

version but not the other way. As the convergence of the

network has not been reached, the old version is no longer a

DAG and loop free topologies cannot be guaranteed in this

situation.

 To avoid possible inconsistencies in the network, the version

number should be propagated unchanged through the DODAG.

However, there is no mechanism in RPL to ensure the integrity

of the version number in received DIO messages. A malicious

node may change this value in its own DIO messages to harm

the network. Upon receiving a malicious DIO with a new

version number, nodes reset their trickle timer, update the

version and advertise this new version through DIO messages to

their neighborhood as well.

 This can cause the illegitimate version number to propagate

through the network. Such manipulation of the version number

in the DIO packets causes both an unnecessary rebuild of the

whole DODAG, and generates loops in the topology.

Furthermore, since the new version of the DODAG is not built

from the root, the topology is no longer acyclic, allowing loops

to occur. This can negatively impact energy resources of the

nodes, routing of data packets and channel availability. The

pattern of this attack makes it difficult for a node to detect it

locally. Indeed a malicious D

 IO packet coming from a parent seems to be legitimate for a

node. When it comes from a child, then the node can consider

this as due to an inconsistency in the network. Also localization

of the malicious DIOs source is impossible in a purely local

point of view, as nodes have only a view of their neighbors.

They need to communicate with each other in order to find the

origin of the attack.

IV. DETECTION STRATEGY

In the following section, we present our detection strategy for

identifying version number attacks in RPL networks. This

strategy uses our distributed monitoring architecture [12] on

which we have deployed detection algorithms specifically

designed for the version number attack. We first detail the

architecture components and then describe the different algo-

rithms that support this detection.

A. Security-oriented Monitoring Architecture

The strategy relies on a distributed monitoring

architecture for the Internet of Things that passively observes the

network based on dedicated nodes. This architecture uses RPL

protocol mechanisms to perform monitoring and detection

operations. Two types of nodes participating in the network

compose.

Fig.2.Detection strategy based on our monitoring

architecture.

this architecture, monitored nodes, also called regular nodes,

plotted in white in Figure 1, and monitoring nodes plotted in

blue which implements the detection solution.

The monitored nodes, noted V = fvi g, are highly con-

strained devices that are typical C0 or C1 devices [13]. Their

function is to carry out their sensing or actuation task and they

constitute the so called regular network. The monitoring nodes

(V 0 = fvk
0 g) are on the other side, higher order devices that are

at least C2 [13] or better. Since they have higher capabilities,

they can perform monitoring and detection activities without

impacting their ability to route information in the regular

network. They are able to intercept and analyze packets sent by

regular nodes and record necessary information. A monitoring

node vk
0 can only monitor its neighborhood Nvk0 which is

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809684 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 230

composed of all nodes in its communication range. However,

network-level monitoring information is necessary to follow the

topology and detect inconsistencies in the network such as

maliciously incremented version number. As such, these

monitoring nodes periodically forward the collected monitor-ing

data towards the sink which can perform a distributed detection.

In order to preserve regular nodes resources, the

monitoring nodes form a second routing topology, called

monitoring network, as illustrated by the upper plane of Figure

1. This network has access strictly limited to monitoring nodes

and is used to send collected information and results of detection

algorithms. We exploit the multi-instance feature of RPL to

build the two networks: one instance for the regular network

noted IR and one for the monitoring instance IM . Figure 1

represents those two instances running at the same time. The two

are completely independent which means that if

Algorithm LOCAL ASSESSMENTpotential att =NULL;for

each DIO received by vk
0 from vi 2 Nvk0 do

if (VNvi > VNvk0) and (potential att == NULL) then potential

att = vi

 send root(Mk = (VNvi ,vi,Nvk0))

 end if

end for

LOCAL ASSESSMENT algorithm implemented on

monitoring nodes except the root.

The regular network breaks down at some point because of

regular node failure or attacks, the monitoring network can still

operate normally.

B. Detection Algorithms

This section details the different algorithms used in our strategy for

detecting version number attacks considering that only one attacker

is present in the network at a given time. Due to the fact that an

incremented version number is propagated in the entire graph, a

monitoring node cannot decide by itself if this is the result of an

attack or not. The monitoring nodes must share monitoring

information to identify the malicious node. Our monitoring

architecture is designed to allow monitoring nodes to collaborate

together thanks to the monitoring instance network. Also, the

monitoring nodes can track information regarding their

neighborhood, so the regular nodes do not have to carry out this

task. To detect an attack and identify malicious nodes, we propose

detection and location algorithms described in Figures 2, 3 and 4.

The local assessment algorithm presented in figure 2 is deployed

on monitoring nodes except the root and allows monitoring nodes

to report to the root the sender of an incremented version number

in their neighborhood. The algorithms presented by Figures 3 and

4 are implemented on the root node. The first one detects the attack

and gather all monitoring node information into tables. The last

algorithm performs the attacker identification by analyzing the

collected information. In the LOCAL ASSESSMENT algorithm, a

monitoring node vk
0 , upon receiving a greater version number V

Nvi from vi than its own version number V Nvk0 , sends to the root

a message containing the address of the sender vi and the list of its

neighbors Nvk0 obtained from the different received RPL control

messages. The monitoring node only sends a message the first time

it receives an incremented version number. Indeed, since the

attacker is in the direct neighborhood of at least one monitoring

node there is no need in sending further messages because senders

of other incremented version number messages are relays. We also

consider the other neighbors of the monitoring node as safe.

Complementary to the algorithms, the root has the possibility to

send a signal message indicating that the monitoring nodes should

reset the potential att value, in order to restart the detection

process, in case another attacker appears in the network.

Algorithm DISTRIBUTED DETECTION anomaly detected = 0

if (VNvj > VNv10 in DIO received from vj anomaly detected = 1

add(potential att list, vj)

add(neigh list, fNv10 g)

start(detection timer)

end if

if (VNvi > VNv10 in Mk received) and (anomaly detected

== 0) then

anomaly detected = 1

start(detection timer)

end if

while (potential att list.nb != card(V 0)) or (!timer

expired(detection timer)) do

for each message Mk received from vk
0 add(potential att list, vi)

add(neigh list, fNvk0 g)

end for

end while

LOCALIZATION()

DISTRIBUTED DETECTION algorithm implemented on the

root.

This procedure exploits the two previous lists in order to

produce two new lists: att list list composed of nodes considered

as malicious and the safe list list containing all nodes classified

as safe. The objective of this procedure is to compare

neighborhoods of monitoring nodes in order to eliminate

potential attackers. At initialization, the first element of the

potential attacker list is added to the attacker list, and the other

neighbors of the corresponding monitoring node are added to the

safe list.

Algorithm LOCALIZATION

 att list = NULL

 safe list = NULL

 for (i=0, i<potential att list.nb, i++) do if (att list ==

NULL) then

 add(att list,potential att list[i])

 add(safe list,fneigh list[i] n potential att list[i]g else

 if (potential att list[i] 2 att list) then

 add(safe list,fneigh list[i]npotential att list[i]g

 else if (potential att list[i] 2 safe list) then add(safe list,fneigh

list[i]npotential att list[i]g

 else

add(att list,potential att list[i])

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809684 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 231

 add(safe list,fneigh list[i] n potential att list[i]g) end if

 if (neigh list[i] \ att list = vm; vm 6= ;) then remove(att

list,vm)

end if

 end if

 end for

Localization algorithm implemented on the root
The distributed detection algorithm (see figure 3 is supported by

the root. Upon receiving either a monitoring message or an

incremented version number, the root starts a detection timer to

allow all monitoring nodes to send their messages. Two lists are

managed by the root node: the potential att list list which is

composed of all vi nodes reported by the different monitoring

nodes and the neigh list list which is composed of each

monitoring node neighbors from the attacker list. In order to

illustrate these algorithms, we provide two examples describing

the different possibilities using the topol-ogy presented in Figure

5. The first scenario shows our detection strategy functioning

under normal conditions. The second scenario is used to present

a use case where the detection strategy produces false positive

results (normal node considered as malicious). In the first

scenario (see Figure 5a), the attacker is located at position 11, it

sends DIO malicious messages to all its neighborhood (plain red

arrows) which are relayed by other nodes (in purple dotted

arrows). The different monitoring nodes report to the sink the

sender of abnormal messages and the list of their neighbors.

V.PERFORMANCEEVALUATION

We have evaluated the performance of our detection strategy

through experiments by implementing a Proof of Concept

prototype. The section details our

FIG.3.(a) Configurations with 4 monitoring nodes. (b) 5

monitoring nodes.
Attacker

position

Series 1 Series 2 Series 3

V5 V5,V9 V5,V9 V5,V9

V9 V5,V9 V5,V9 V9

V18 V5,V18 V18 V18

TABLE 1: Attacker detection results

experimental setup, the selection process for the placement of

monitoring nodes and the the performance results of our

detection algorithms.

A.SIMULATION SETUP

In these experiments, we have set up a grid topology of 20 nodes

corresponding to the lower plane of Figure 1. The grid topology

was chosen because it allows relocation of the attacker to

multiple positions easily, making it possible to study the

performance of our detection strategy from different locations

and neighborhood scenarios within a network. The Contiki 2.7

operating system was used to implement the sink, regular nodes

and monitoring nodes. We have considered the attacker

implementation proposed in [5]. The Cooja tool [14] was used to

run the simulation with the compiled binaries of the different

nodes. The radio model used was the DGRM model (Directed

Graph Radio Medium) to emulate the links as shown in the

lower plane of Figure 1: regular nodes can communicate with

their neighbor horizontally and vertically while the monitoring

nodes can also listen diagonally. Across all experiments, node

v1
0 is the DODAG root, acting as the sink to which all other

nodes send messages every twenty seconds to generate a

background traffic. The attacker is designed to constantly send

incorrect version numbers, which are greater than the root’s

version. Each simulation has lasted ten minutes which is enough

to test our detection algorithms since only the first attack

message is required for the detection as previously explained.

The location of the attacker has been set to one of regular nodes,

such that at least one simulation with the attacker located at

every regular node is executed. This entire set of simulations is

repeated three times for accuracy reasons. Attacks start after five

minutes of simulation time, so that the network has enough time

to settle and reaches a stable RPL topology. Not only the

location of the attacker has been varied but also the location and

the number of monitoring nodes. Indeed, we have seen in

Section IV-B that it was possible to encounter false positives

results depending on the fact that a node is monitored by one or

several monitoring nodes. The next section details how and why

different monitoring nodes configurations were chosen to

evaluate the number of false positives.

B.MONITORING NODE PLACEMENT SELECTION

Since the designed detection solution depends on the

cover-age of regular nodes by monitoring nodes, we defined the

fol-lowing metrics: (i) Covi representing the percentage of

regular nodes covered by exactly i monitoring nodes (i 2 [1; M];

M is the number of monitoring nodes); (ii) Cai representing the

percentage of regular nodes covered by at least i monitoring

nodes, e.g. Ca2 = Cov2 + Cov3 + Cov4 for M = 4. In all cases, we

target Ca1 equals to 100% because all regular nodes should be

covered by at least one monitoring node since the architecture is

able to monitor all nodes. As shown by the second scenario in

Section IV-B, Ca2 is an important parameter for selecting the

configurations to be considered, because the number of false

positive depends on the neighborhood overlapping of the

monitoring nodes. Therefore, monitoring nodes configurations

have been selected for different Ca2 values in order to quantify

the impact of the Ca2 value on the number of false positives.

Five different Ca2 values have been chosen including the lowest

and the highest possible values for 4 and 5 monitoring nodes in

the considered topology. The minimal number of required

monitoring nodes is 4 so that Ca1 equals to 100%. This value is

given by the resolution of an Integer Linear Program (ILP) with

our grid topology under the constraint that the sink, v1
0 , is a

monitoring node. The rest of the monitoring nodes are chosen

among all the other nodes. A particular Ca2 value corresponds to

several combination of Covi. Therefore, one configuration of

each combination has been chosen for the simulations. For 4

monitoring nodes, the number of possible configurations so Ca1

= 100% is 24. We have also selected configurations with 5

monitoring nodes because the obtained Ca2 values allow us to

have zero false positive as illustrated by Figure 7b. For 5

monitoring nodes, 427 configurations can be run. We have

simulated 29 configurations corresponding to the selected Ca2

values. The different chosen Ca2 values can be seen on Figure 7.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809684 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 232

FIG.4. False positive rates for different location of the

attacker when configuration is the topology of 1.

 For each simulated scenario, the false positive rate (FPR) was

calculated according to Equation 1, where F P and T N are

respectively the number of false positives and the number of true

negatives. A false positive is a node which has been incorrectly

detected as malicious by our detection

solution (the node is actually safe). A true negative is a

node which has been properly considered as safe.

 FPR =
FP

FP+TN

C.DETECTION RESULTS

Across all experiments, our detection strategy has suc-

cessfully located the attacker, but other regular nodes were

sometimes detected as malicious too. Figure 6 details false

positive results for the topology presented in the lower plane of

Figure 1 where the monitoring nodes are v1
0 ; v7

0 ; v13
0 and v15

0

and the Ca2 is 43,75% (maximum value for 4 nodes). We can

observe that the FPR is 0 for 13 positions of the attacker Details

about the detection results when the FPR is higher than 0 are

given in Table III. When the attacker corresponds to node v5,

node v9 is always detected as malicious too, because node v9 is

each time the direct relay of the attacker v5 and is monitored by

only one monitoring node (v13
0). No other monitoring nodes

could have exonerate it. This is also the case for other positions

of the attacker. However, attack relays were not considered as

malicious each time. This can be explained by the fact that the

attack relays can change depending on the timing for each

simulation. For example, when the attacker is v18, v5 is

considered as malicious only once, this is because monitoring

node v1
0 receives only once the attack relay message from v5.

The other times, the relay node v6 is also monitored by v7
0 which

exonerates it. Similar results have been obtained for the other 35

configurations.

 FIG.5.Simulation process in contiki.

VI.SCALABILITY EVALUATION

We have also analyzed the scalability of our solution in

line with the considered node placement. We have represented

the problem of having at least C% of the nodes covered by at

least two monitoring nodes using an optimization model. This

constraint can be transformed into having at most (100 C)% of

the nodes covered by exactly one monitoring node which can be

formulated as follows: for a given topology, a given connectivity

matrix for all possible monitoring nodes placement in this

topology, a given number of monitoring nodes and a given value

C, find a configuration of monitoring nodes placement that

minimizes the number regular nodes monitored by only one

monitoring nodes so that at most (100 C)% regular nodes are

covered by strictly one monitoring node.In that context, we have

considered four parameters detailed in Table IV, as inputs to

solve this problem. The first parameter is the size of the

topology N. The second one is the connec-tivity matrix detailing

the links of possible monitoring nodes with other nodes, Ai;j = 1

if node vi can listen to node vj. We set the diagonal of this matrix

to 0, i.e. 8i; Ai;i = 0 which means that we consider that

monitoring node does not cover itself. The third parameter is the

number of monitoring nodes M. The last parameter is the

percentage of regular nodes we want to be monitored by at least

 two monitoring nodes C. The variables used are Y which

represents if node vi is monitoring node (Yi = 1) or not (Yi = 0),

W indicating if node vi is covered by monitoring node vj (Wi;j =

1) or not (Wi;j = 0). The last variable is Z and represents if node

vi is covered by exactly one monitoring node (Zi = 1) or not (Zi =

0). The total number of variables for this problem is N(N + 2). is

used to set v1
0 , the root, as a monitoring node, it is possible to

set another particular node to be a monitoring node according to

the topology specifics. Equation 3 indicates how many

monitoring nodes we choose. The constraint Ca1 = 100% is

given by Equation 4. Equation 5 calculates variable W which is

used in Equation 6 to compute Z. The right part of this equation

forces Zi = 0 if vi is a monitoring node or else Zi = 1.

FIG.6.Number of monitoring nodes needed to have

ca1=100%, ca2 = for different topologies.

VII.CONCLUSION
We have proposed in this paper a detection strategy

with dedicated algorithms to address version number attacks in

RPL networks. We have instantiated this solution based on our

distributed monitoring architecture which preserves constrained

nodes resources. We have exploited monitoring nodes

collaboration to identify the attacker, the attacker localization

process being performed by the root after gathering detection

information from all monitoring nodes. We have evaluated our

solution through experiments and have analyzed the

performance according to defined metrics. We have shown the

false positive rate of our solution can be reduced by a strategic

monitoring nodes placement. We have also considered the

scalability issue by proposing an optimization problem which

can be easily adapted to different topologies. By resolving this

problem, we have quantified the number of required monitoring

nodes to ensure an acceptable false positive rate for a given size

of topology. As future work, we are interested in performing

complementary experiments in real infrastructures with

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809684 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 233

additional classes of devices implementing the RPL protocol.

We also want to evaluate and extend our solution to the case of

attacker coalition where are several malicious nodes are involved

at the same time in the network. We are also planning to enhance

our architecture with other detection modules for addressing

additional attacks [17].

REFERENCES

1.D. Popa, N. Cam-Winget, and J. Hui, “Applicability Statement

for the Routing Protocol for Low Power and Lossy Networks

(RPL) in AMI Networks,” Internet Engineering Task Force,

Internet-Draft draft-ietf-roll-applicability-ami-13, may 2016,

work in Progress.

2.E. Baccelli, R. Cragie, P. V. der Stok, and A. Brandt,

“Applicability Statement: The Use of the Routing Protocol for

Low-Power and Lossy Networks (RPL) Protocol Suite in Home

Automation and Building Control,” RFC 7733, feb 2016.

3.M. Ersue, D. Romascanu, J. Schonw¨alder,¨ and A. Sehgal,

“Management of Networks with Constrained Devices: Use

Cases,” IETF Internet Draft <draft-ietf-opsawg-coman-use-

cases-02>, July 2014.

4.T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,

K. Pister, R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6

Routing Protocol for Low-Power and Lossy Networks,” RFC

6550, IETF,2012.

5.A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J.

Schonw¨alder,¨ “A Study of RPL DODAG Version Attacks,” in

Proc. of AIMS confer-ence, 2014.

6.A. Ahmet, S. F. Oktug, and S. B. O. Yalcin, “RPL Version

Number Attacks: In-dept Study,” in Proc. of IEEE/IFIP Network

Operations and Management Symposium, Istanbul, Turkey,

Apr. 2016.

7.A. Dvir, T. Holczer, and L. Buttyan, “VeRA - Version

Number and Rank Authentication in RPL,” in Proc. of the 8th

IEEE International Conference on Mobile Adhoc and Sensor

Systems (MASS), Hangzhou, China, October 2011, pp. 709–

714.

8.H. Perrey, M. Landsmann, O. Ugus, M. Wahlisch,¨ and T. C.

Schmidt, “TRAIL: Topology Authentication in RPL,” Tech.

Rep., 2013.

http://www.jetir.org/

